63 research outputs found

    GlycoMapsDB: a database of the accessible conformational space of glycosidic linkages

    Get PDF
    Conformational energy maps of the glycosidic linkages are a valuable resource to gain information about preferred conformations and flexibility of carbohydrates. Here we present GlycoMapsDB, a new database containing more than 2500 calculated conformational maps for a variety of di- to pentasaccharide fragments contained in N- and O-glycans. Oligosaccharides representing branchpoints of N-glycans are included in the set of fragments, thus the influence of neighbouring residues is reflected in the conformational maps. During refinement of new crystal structures, maps contained in GlycoMapsDB can serve as a valuable resource to check whether the torsion values of a glycosidic linkage are located in an ‘allowed’ region similar to the Ramachandran plot analysis for proteins. This might help to improve the structural quality of the glycan data contained in the Protein Data Bank (PDB). A link between GlycoMapsDB and the PDB has been established so that the glycosidic torsions of all glycans contained in the PDB can be retrieved and compared to calculated data. The service is available at

    GlycomeDB—a unified database for carbohydrate structures

    Get PDF
    GlycomeDB integrates the structural and taxonomic data of all major public carbohydrate databases, as well as carbohydrates contained in the Protein Data Bank, which renders the database currently the most comprehensive and unified resource for carbohydrate structures worldwide. GlycomeDB retains the links to the original databases and is updated at weekly intervals with the newest structures available from the source databases. The complete database can be downloaded freely or accessed through a Web-interface (www.glycome-db.org) that provides flexible and powerful search functionalities

    Centralized Modularity of N-Linked Glycosylation Pathways in Mammalian Cells

    Get PDF
    Glycosylation is a highly complex process to produce a diverse repertoire of cellular glycans that are attached to proteins and lipids. Glycans are involved in fundamental biological processes, including protein folding and clearance, cell proliferation and apoptosis, development, immune responses, and pathogenesis. One of the major types of glycans, N-linked glycans, is formed by sequential attachments of monosaccharides to proteins by a limited number of enzymes. Many of these enzymes can accept multiple N-linked glycans as substrates, thereby generating a large number of glycan intermediates and their intermingled pathways. Motivated by the quantitative methods developed in complex network research, we investigated the large-scale organization of such N-linked glycosylation pathways in mammalian cells. The N-linked glycosylation pathways are extremely modular, and are composed of cohesive topological modules that directly branch from a common upstream pathway of glycan synthesis. This unique structural property allows the glycan production between modules to be controlled by the upstream region. Although the enzymes act on multiple glycan substrates, indicating cross-talk between modules, the impact of the cross-talk on the module-specific enhancement of glycan synthesis may be confined within a moderate range by transcription-level control. The findings of the present study provide experimentally-testable predictions for glycosylation processes, and may be applicable to therapeutic glycoprotein engineering

    Bioinformatics and molecular modeling in glycobiology

    Get PDF
    The field of glycobiology is concerned with the study of the structure, properties, and biological functions of the family of biomolecules called carbohydrates. Bioinformatics for glycobiology is a particularly challenging field, because carbohydrates exhibit a high structural diversity and their chains are often branched. Significant improvements in experimental analytical methods over recent years have led to a tremendous increase in the amount of carbohydrate structure data generated. Consequently, the availability of databases and tools to store, retrieve and analyze these data in an efficient way is of fundamental importance to progress in glycobiology. In this review, the various graphical representations and sequence formats of carbohydrates are introduced, and an overview of newly developed databases, the latest developments in sequence alignment and data mining, and tools to support experimental glycan analysis are presented. Finally, the field of structural glycoinformatics and molecular modeling of carbohydrates, glycoproteins, and protein–carbohydrate interaction are reviewed

    Partially glycosylated dendrimers block MD-2 and prevent TLR4-MD-2-LPS complex mediated cytokine responses.

    Get PDF
    The crystal structure of the TLR4-MD-2-LPS complex responsible for triggering powerful pro-inflammatory cytokine responses has recently become available. Central to cell surface complex formation is binding of lipopolysaccharide (LPS) to soluble MD-2. We have previously shown, in biologically based experiments, that a generation 3.5 PAMAM dendrimer with 64 peripheral carboxylic acid groups acts as an antagonist of pro-inflammatory cytokine production after surface modification with 8 glucosamine molecules. We have also shown using molecular modelling approaches that this partially glycosylated dendrimer has the flexibility, cluster density, surface electrostatic charge, and hydrophilicity to make it a therapeutically useful antagonist of complex formation. These studies enabled the computational study of the interactions of the unmodified dendrimer, glucosamine, and of the partially glycosylated dendrimer with TLR4 and MD-2 using molecular docking and molecular dynamics techniques. They demonstrate that dendrimer glucosamine forms co-operative electrostatic interactions with residues lining the entrance to MD-2's hydrophobic pocket. Crucially, dendrimer glucosamine interferes with the electrostatic binding of: (i) the 4'phosphate on the di-glucosamine of LPS to Ser118 on MD-2; (ii) LPS to Lys91 on MD-2; (iii) the subsequent binding of TLR4 to Tyr102 on MD-2. This is followed by additional co-operative interactions between several of the dendrimer glucosamine's carboxylic acid branches and MD-2. Collectively, these interactions block the entry of the lipid chains of LPS into MD-2's hydrophobic pocket, and also prevent TLR4-MD-2-LPS complex formation. Our studies have therefore defined the first nonlipid-based synthetic MD-2 antagonist using both animal model-based studies of pro-inflammatory cytokine responses and molecular modelling studies of a whole dendrimer with its target protein. Using this approach, it should now be possible to computationally design additional macromolecular dendrimer based antagonists for other Toll Like Receptors. They could be useful for treating a spectrum of infectious, inflammatory and malignant diseases
    corecore